
International Journal of Scientific & Engineering Research, Volume 7, Issue 7, July-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Gesture Controlled Robot
Shaunak Chokshi, Shashank Sharma, Hardik Joshi

Abstract— Even after more than decades of input devices development, many people still find the interaction with the computers and

robots an uncomfortable experience. Efforts should be made to adapt computers and robots to our natural means of communication:

speech and body language. The aim of our project is to implement a real time command system through hand gesture recognition, using

general purpose hardware and low costing sensor like a simple raspberry-pie and an USB webcam, so any user can make use of it in

industries or at home. The basis of our approach is a fast segmentation process to obtain the hand gesture from the whole image which is

able to deal with large number of hand shapes against different backgrounds and lightning conditions, and a recognition process that

identifies the hand posture for different control application

Index Terms— Raspberry Pie, Convex hull, PWM, Motor diver, Contour, Beagle bone, Contoller board

—————————— ——————————

1 INTRODUCTION

Gestures can originate from any bodily motion or state but com-

monly originate from the face or hand. Many approaches have

been made using cameras and computer vision algorithms to in-

terpret sign language. However, the identification and recognition

of posture, gait, proxemics, and human behaviors is also the sub-

ject of gesture recognition techniques. Gesture recognition can be

seen as a way for computers to begin to understand human body

language, thus there’s a need of building a richer bridge between

machines and humans than primitive text user interfaces or

even GUIs (graphical user interfaces), which still limit the majori-

ty of input to keyboard and mouse. This could potentially make

conventional input device such as mouse, keyboards and

even touch-screens redundant. The project is an application for

live motion gesture recognition using Raspi camera module and

performs the action corresponding to it. In our case we have con-

trolled the motion of a mobile robot according to the gesture of the

user.

2 BLOCK DIAGRAM

3 HADWARE

Implementing image processing using hardware is a cumbersome
and difficult task thus selection of the proper development board
becomes an important issue. The most commonly used boards
with which we all are familiar are the Ardiuno, Raspberry Pi and

Beagle Bone.

3.1 Development Board

We choose to work on raspberry pi due to its high clock speed and
cost-effectiveness. Raspberry Pi is based on the Broadcom
BCM2835 system on a chip (SoC), which includes an ARM1176JZF-
S700 MHz processor, Video Core IV GPU, and has 512 MB of
RAM. It has a Level 1 cache of 16 KB and a Level 2 cache of 128 KB.
The Foundation provides Debian and Arch Linux ARM distribu-
tions for download. Tools are available for Python as the main pro-
gramming language, with C, C++, Java, Perl and Ruby.

3.2 Communication

We have used RF-module, WIR-1186 available on Robokits India
Pvt. Ltd. for transmitting data from laptop to robot as RF has long

Fig. 1. General Block Diagram.

Fig. 2. Comparission between different development boards.

Fig. 1. General Block Diagram.

1233

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Face
https://en.wikipedia.org/wiki/Hand
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Sign_language
https://en.wikipedia.org/wiki/Proxemics
https://en.wikipedia.org/wiki/Body_language
https://en.wikipedia.org/wiki/Body_language
https://en.wikipedia.org/wiki/Text_user_interface
https://en.wikipedia.org/wiki/GUI
https://en.wikipedia.org/wiki/Input_devices
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Computer_keyboard
https://en.wikipedia.org/wiki/Touch_screen

International Journal of Scientific & Engineering Research Volume 7, Issue 6, June-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

communication range. This module integrates RF69, an extremely
low-power sub-GHz transceiver, an MCU for wireless network
control, data handling and hardware interface, a PCB antenna and
matching circuit. It supports UART communication protocol and
baud rate ranging from 9600bps to 115200bps.

3.3 Driving Of Robot

We have used two single channel motor driver (model no. RKI-
1340) available at Robokits India Pvt. Ltd. for controlling the speed
of the motors used in robot. This driver is 6v-24v compatible 20A
capable DC motor driver. It comes with a simple TTL/CMOS
based interface that can be connected directly to I/Os of a MCU.
Speed of the motor can be controlled by PWM signals generated by
any MCU.

4 GESTURE RECOGNITION ALGORITHM

The aim of hand detection is to device a program that is able
to detect the hands, track them in real time and perform some
gesture recognition. It was done with simple signal processing
performed on images obtained from a Raspberry Pi camera. It
detected the human hand from the image and detect it as a
right hand or left hand. It included the following steps to ob-
tain the results.

4.1 Detecting Background

From the feed from the camera, we remove the background.
We use running average over a sequence of images to get the
average image which will be the background too.

This equation works because of the assumption that the back-
ground is mostly static. Hence for those stationary item, those
pixels aren’t affected by this weighted averaging and ∝.𝑥 +
(1−∝)= 𝑥. Hence those pixels that are constantly changing isn’t
a part of the background, hence those pixels will get weighed
down. Hence the stationary pixels or the background gets more
and more prominent with every iteration while those moving
gets weighed out. Thus after a few iterations, we get the above
average which contains only the background. In this case, even
face is a person is a part of the background as it needs to detect
only my hands.

4.2 Background Subtraction

A simple method to start background subtraction is we can
subtract the pixel values. However this will result in negative
values and values greater than 255, which is the maximum val-
ue used to store an integer, but if we have a black background
then nothing gets subtracted in that case. Instead we use an
inbuilt background subtractor based on a Gaussian Mixture-
based Background/Foreground Segmentation Algorithm.
Background subtraction involves calculating a reference image,
subtracting each new frame from this image and thresholding
the result which results in a binary segmentation of the image
which highlights regions of non-stationary objects. We then use
erosion and dilation to enhance the changes to make it more
prominent.

Fig. 3.Block Diagram of Hand Detection.

Fig. 3.Equation to detect background by averaging.

Fig. 5.Output of background subtraction

1234

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 6, June-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

4.2 Contour Extraction

Contour extraction is performed using OpenCV’s inbuilt edge
extraction function. It uses a canny filter.

4.3 Convex Hull and Defects

By having the set of points for the contour, we find the smallest
area convex hull that covers the contours. We observe that the
convex hull points are most likely to be on the fingers as they
are the extremities and hence this fact can be used to detect no.
of fingers. But since our entire arm is there, there will be other
points of convexity too. So we find the convex defects i.e, be-
tween each arm of the hull, we try to find the deepest point of
deviation on the contour.

4.4 Tracking and Finger Detection

The defect points are most likely to be the center of the finger
valleys as pointed out by the picture. So we find the average of
all these defects which is definitely bound to be in the center
of the palm but it’s a very rough estimate. So we average out
and find this rough palm center. As assumption is to be made
that the palm is angled in such a way that it is roughly a circle.

So to find the palm center , we take 3 points that closes to the
rough palm center and find the circle center and radius of the
circle passing though these 3 points. Thus we get the center of
the palm. Due to noise, this center keeps jumping, so to stabi-
lize it, we take an average over a few iterations. Thus the radi-
us of the palm is an indication of the depth of the palm. Using
this we can track the position of the palm in real time and even
know the depth of the palm using the radius.
The next challenge is to detect the no. of fingers. We use a
couple of observations to do this. For each maxima defect
point which will be the finger tip, there will be 2 minimal de-
fect points to indicate the valleys. Hence the maxima and the 2
minimal defects should form a triangle with the distance be-
tween the maxima and the minimas to be more or less same.
Also the minima should be on or pretty close to the circumfer-
ence of the palm. We used this factor too. Also the ratio of the
palm radius to the length of the finger triangle should be more
or less same. Hence using these properties, we get the list of
maximal defect points that satisfy the above conditions and
thus we find the no of fingers using this. If no of fingers is 0, it
means the user is showing a fist.

5 OUTPUT

Fig. 6.Output of contour detection

Fig. 5.Output of background subtraction

Fig. 7.Output of Convex Hull and Defects detection

Fig. 8.Different outputs for “STOP” gesture

Fig. 9.Different outputs for “FORWARD” gesture

1235

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 6, June-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

6 CONCLUSION

We have implemented Convex-Hull detection method to rec-
ognize the gesture in raspberry-pi. There are many algorithms
available to detect gesture like Haar Cascade method where
we need a lot of positive and negative images to train the filter
which is very time consuming and adding a new gesture
would be thus very cumbersome. However, In the Convex-
Hull detection algorithm we can easily add a gesture and since
this algorithm uses adaptive thresholding, there is no effect of
light intensity and it sets the threshold dynamically with the
amount of light present. The drawback of this method is the
limited number of gesture as gestures depend on the number
of fingers.

REFERENCES

[1] http://www.intorobotics.com/9-opencv-tutorials-hand-
gesture-detection-recognition/

[2] http://docs.opencv.org/master/d7/d8b/tutorial_py_fac
e_detection.html#gsc.tab=0

[3] http://stackoverflow.com/questions/6471023/how-to-
calculate-convex-hull-area-using-opencv-functions

[4] http://www.swarthmore.edu/NatSci/mzucker1/opencv
-2.4.10-

[5] http://www.robopapa.com/projects/InstallOpenCVOnR
aspberryPi

[6] http://eyalarubas.com/face-detection-and recogni-
tion.html

[7] Daniel Lelis Baggio, Shervin Emami, David Millan
Escriva, Khvedchenia Levgen, Naureen Mahmoon, Jason
Saragih and Roy Shilkrot, “Mastering OpenCV with Prac-
tical Computer Vision Projects”, Packt Publishing Ltd.,
First Edition- December 2012.

[8] Gesture recognition: Enabling natural interactions with
electronics by Texas Instruments

[9] Uma Sahu, Ditty Varghese, Gayatri Gole, Melanie Fer-
nandes, and Pratiksha Mishra, “Hand Cursor Implemen-
tation Using Image Processing & Sixth Sense Technolo-
gy”, International Journal of Infinite Innovations in Tech-
nology- ISSN: 2278-9057 IJIIT, Volume-I Issue-III 2012-
2013, January Paper-08 Reg. No.:20121208 DOI: V1I3P08.

[10] Amiraj Dhawan, Vipul Honrao, “Implementation of Hand
Detection based Techniques for Human Computer Inter-

action”, International Journal of Computer Applications
(0975 – 8887),Volume 72, Page No.17, June 2013.

Fig. 10.Different outputs for “Backward” gesture

1236

IJSER

http://www.ijser.org/
http://www.intorobotics.com/9-opencv-tutorials-hand-gesture-detection-recognition/
http://www.intorobotics.com/9-opencv-tutorials-hand-gesture-detection-recognition/
http://docs.opencv.org/master/d7/d8b/tutorial_py_face_detection.html#gsc.tab=0
http://docs.opencv.org/master/d7/d8b/tutorial_py_face_detection.html#gsc.tab=0
http://www.swarthmore.edu/NatSci/mzucker1/opencv-2.4.10-
http://www.swarthmore.edu/NatSci/mzucker1/opencv-2.4.10-
http://www.robopapa.com/projects/InstallOpenCVOnRaspberryPi
http://www.robopapa.com/projects/InstallOpenCVOnRaspberryPi
http://eyalarubas.com/face-detection-and-recognition.html
http://eyalarubas.com/face-detection-and-recognition.html

